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LE’lTER TO THE EDITOR 

Vector coherent state theory in a group with non-commuting 
raising generators 

K T Hechtt and Y Suzuki 
Department of Physics, Niigata University, Niigata 950-21, Japan 

Received 21 October 1986, in final form 10 November 1986 

Abstract. Vector coherent state theory is used to give an explicit construction of the 
irreducible representations of a group with non-commuting raising generators, the simple 
example of the compact unitary symplectic group USp(4) 3 USp(2) x USp(2). 

The recent generalisation of standard coherent state theory to a theory of vector 
coherent states (Rowe 1984,1986, Rowe et a1 1985; Deenen and Quesne 1984a, Quesne 
1986, Castaiios et a1 1985, 1986) has proved remarkably powerful in the explicit 
construction of irreducible representations of a number of important groups with wide 
applications to various branches of physics. Introduced originally for the evaluation 
of matrix elements of the non-compact Sp(24 R )  groups (Rowe er a1 1984, Deenen 
and Quesne 1984b), the vector coherent state method has been applied to a large 
number of other groups. The compact groups USp(4) 3 U( 1) x SU(2) and SO(8) 1 U(4) 
in their application to nuclear seniority schemes have been re-examined in terms of 
the vector coherent state theory (Hecht and Elliott 1985, Hecht 1985). The general 
case of the fermion pair algebra SO(2n) 3 U(n) has recently been discussed by Rowe 
and Carvalho (1986). With the use of complementary Sp(24 R )  symmetries the vector 
coherent state method has also been used in the construction of group theoretically 
sound orthonormal bases for the nuclear rotational SU(3) 3 SO(3) scheme (Le Blanc 
and Rowe 1985) and for the standard Wigner supermultiplet basis (Hecht et a1 1987). 
Very recently vector coherent state theory has been used to show that the Wigner 
calculus for U(n) in the canonical Gel’fand U(n)  3 U(n - 1) chain can be reduced to 
an exercise in U( n - 1) recoupling, often with multiplicity-free recoupling coefficients 
evaluated through symmetric group techniques. 

In all these examples vector coherent state theory has been applied to groups with 
the following general structure (Rowe 1986). The group generators can be separated 
into a family of commuting raising operators, A, ,  their Hermitian conjugate lowering 
operators, B,, and a core subalgebra, C (usually a maximal compact subalgebra) with 
the properties 

B, = A: i =  1, .  . . , m (1) 

[ A , ,  4 1  = 0 for all i, j (2) 

B l l r I w 7 7 )  = 0 (3a)  
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or, alternatively, 

where ( rhW) are the core subgroup irreducible representations containing the lowest 
(highest) weight states of the full group and 77 designates the full set of states of r, 
7 = 1, . . . , D = dim(r). In the vector coherent theory an algebra of the above type is 
mapped into a direct sum of an m-dimensional Heisenberg-Weyl algebra and an 
intrinsic algebra of type C. 

Since there are a number of other interesting examples, such as SO(2n + 1) 2 U(n), 
in which all of the above criteria are satisfied, except for the commutability of the Ai, 
the question naturally arises: can vector coherent state theory be applied to the 
calculation of matrix elements of Lie algebras for which the criterion (2) is relaxed 
and the Ai do not form a set of commuting operators? The simplest such group is the 
compact unitary symplectic group USp(4) = USp(2) x USp(2) generated by the com- 
muting angular momentum operators J and A, which generate the subgroup, together 
with the four M,, MA raising/lowering operators of type F,l/2,*l12. The notation 
follows that of Hecht (1965) in which the irreducible representations of USp(4) are 
specified by the highest weight values of J, A designated by (J,,,A,,,). The aim of the 
present investigation is not to expand on well known results of this example. The full 
set of Wigner coefficients coupling an arbitrary representation (J,,,A,,,) with the four-, 
five- and ten-dimensional representations are known in general algebraic form (Hecht 
1965). Instead it is our aim to use this very simple example as a testing ground for 
the vector coherent state method. Since the quantum numbers JM, AM,, give a complete 
labelling of the states of (J,,,A,,,) the K 2  matrices, which are a central feature of the 
vector coherent state method, are all one-dimensional, so that this is the simplest of 
possible examples. The group chain USp(4) 3 USp(2) x USp(2) has recently been used 
(Klein and Zhang 1986) to give a boson realisation of USp(4) in very explicit analytic 
form. A similar programme for USp(4) has been initiated by Castafios and Moshinsky 
(1987). However, these investigations start with the boson mappings of three commut- 
ing raising operators of USp(4) ( J + ,  A+ and FIl2 in the present notation) and thus 
have an aim quite different from the present one which is the construction of the states 
I (  JmA,,,)JM,hMA) by vector coherent state techniques. 

At first, vector coherent state theory does not seem to apply to this very simple 
example. No pair of operators from the family of F+1/z*l/2 can be found which 
annihilate the states of any extrema1 J, A pair for all values of M,, M,,,  and it appears 
that the vital criterion of (3) cannot be met. However, the problem can be solved by 
vector coherent state methods in a slightly indirect way by using the vector-valued 
highest weight states IJ,,,M, = J,,,, A,,,MA) which are annihilated by the raising operators 
Fl/2 1 / ~  = A I ,  Fl/2-l/~ = A2, and J+. (The latter could have been designated AZI, but 
the name J+ is to be preferred because of the special character of the J vector.) By 
lowering M, along with J, initially keeping M, = J, while generating the full spectrtim 
of A values through vector coupling techniques, the vector coherent state theory can 
be applied. The raising operators satisfy the commutator algebra 

The commutators for the full algebra including the Hermitian conjugate lowering 
operators B1 = F-1/2-1/2, B2= F- , /?  J -  and the core group operators Jo ,  A+,  A-,  



Letter to the Editor L119 

A. can be read from table 1 of Hecht (1965). The functional representation of a state 
vector I+) is given in terms of the complex variables z = z,, z2 and w by 

+(z, W )  = C (z, w I J ~ m A m M , ) ( J ~ m A m M , I e X I + )  

ex = exp(z,A, + z2A2+ wJ+) = exp(z,A, + z2A2) exp( wJ+). 

( 5 )  
MA 

with 

(6) 
Straightforward differentiation yields 

- e x =  a x 

32,  
e (A, - f z 2 J + )  = (A, +fz2J+) ex 

-,x= a x 

a z2 
e (A,+fz,J+) = (A2-fzIJ+) ex 

- e x =  a x 
a w  

e J+= J + e X  

where these lead to the functional representations of the raising operators 

(7) 

a r(Jo)=Jo-- z,-+z2- -w- - Y a  2 az, az2 7 a w  
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where the summation convention is implied in Z k d / d Z k .  The intrinsic operators So and 
& = Aintr are the operators J o ,  A restricted to act only in the ( 2 A ,  + 1)-dimensional 
space lJmJmAmM,4) of the highest weight eigenvalues Jo=J,, A = A,. The operators 
A""" are functions only of the zi and a/az i ,  e.g. Af"" = z ld /dz2 .  Except for the interchange 
of raising and lowering operators and a slightly different phase convention this is a 
special case of the functional representation of the SO(2n + 1 )  2 U( n )  algebra recently 
given by Rowe and Le Blanc (1986). The problem seems to have been reduced to a 
direct sum of a three-dimensional Heisenberg-Weyl algebra generated by 
z i ,  a /az i ,  w, a/aw and an intrinsic algebra with basis jo  and & which generates a 
U ( l )  x SU(2)  Lie group. However, the coupling of w and z spaces causes unnecessary 
complications. This can be avoided by introducing lowering operators 9, , B2 which 
preserve the MJ = J characteristic of the highest weight state 

Note that the commutator of J+ with these Bi leaves only terms proportional to J , .  
To convert the Dyson realisation of ( 8 a )  and ( 8 b )  to a unitary one by means of the 
Hermitian K operator it is useful to consider the combination [E, (2Jo+ 1 )  - L A 2 ]  in 
place of El leading to 

K - 1 T ( E l ( 2 J ~ + l ) - J - A ~ ) K  

= Y ( E ~ ( ~ J O + ~ ) - J - A ~ )  

= ( y ( (2Jo+  1)AI- BJ+)) '= (K- 'T( (2Jo+  1 ) A l -  E J + ) K ) '  

where the last step is valid when these operators are permitted to act only between 
states with M, = J so that operators a/aw acting to the right and w acting to the left 
yield zero and can be omitted. Equation (11) can then be put into the form 

= K 2 z l ( 2 J o +  1 )  ( 1 2 )  
and, similarly from [E2(2J0+ 1) + L A , ] ,  

= K2z2(2J0+ 1). (13 )  
The first term in the left-hand side of (12 )  and ( 1 3 )  can be simplified through an R 
operator which is part of the standard machinery of vector coherent state theory 
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The second term is best expressed through a A space vector-coupled form, noting that 
( z , ,  z ~ ) = ( z - , / ~ - , / ~ ,  z - , / ~ + , / ~ ) ,  so that (12) and (13) can be put into the form 

( (2J0+2)[@ z,] - d [ A '  x (z  K 2 =  K2z1(2Jo+ 1 )  (15) 

((2JO+2)[R,z2]+v'3[A1x(z K 2 = K 2 z 2 ( 2 J 0 + 1 ) .  (16) 

Although no further simplification has been achieved of the second terms in these 
equations it is easy to show that these second terms have matrix elements proportional 
to zi. In a A space vector-coupled basis IJ,,,J = M,, [A,,, x A,,,,,]AM,,) with the intrinsic 
A spin, A,,,, coupled with a collective A angular momentum with A space collective 
functions (A,,,, = Ac), 

we note that Ac = 1/2(  n, + n 2 ) ,  where 

In the subspace of states with Mj = J, J = J,,, -f( n, + n 2 ) ,  and the eigenvalue of w d / J w  
has the value n, = 0, so that 

A,= J,,, - J. (19) 

( A c + f ~ ~ ~ ~ ~ A c )  = (2Ac+ = - ( ~ , - ~ ~ ~ ~ / ~ z / ~ ~ ~ )  (20) 

Equation (17) also yields the z space reduced matrix elements 

(Ac+ 111z211A,)=[(2A,+ l ) (Ac+l)11 '2  also ( A m l l A / I A m ) = [ A m ( A m  +1)1'/'. 
Finally, with 

([A,,, x ( A , + ~ ) ] A ' ~ ~ z ~ ~ [ A , , ,  x &]A) = U(A,, ,A,A'f;  AAc+f)[(2A,+ 1)]1'2 

([A,,, x (A,-f)]A'Ila/azll[A,,, xA,]A)= -U(A,, ,A,A'f;  AAc-f)[(2Ac+ I)]"' 

(21) 

(22) 

d ( [ A m  x (A,+ l)]All[A1 X (z2)'I0ll[Am X AclA) 

= -U(A,,,lAA,; A,,,A,+ l)[A,,,(A, + 1)(2Ac+ l ) ( A c +  (23) 

and, using explicit expressions for the well known Racah coefficients, 

where the upper and lower equation applies to A ' = ( A + f )  and ( A - f ) ,  respectively. 
The needed difference of SZ eigenvalues follows at once from (14): 
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With these results and A, = J,,, - J,  (15) and (16) lead to 
2 K ( J  -f, A' = A*$) 

(2J+ 1 )  
K 2 (  J, A) 

$( J ,  + A, + J - A + 1 )( J ,  - A,,, + J - A) =I ;( J,,, + A,,, + J + A + 2)( J ,  - A,,, + J + A + 1) 

Since all K 2  matrices are one dimensional, vector coherent state theory at once leads 
to the reduced matrix elements of the lowering/raising generators. It will be convenient 
to use matrix elements reduced in both J and A angular momenta. With the explicit 
value of ( J J f - i I J  - fJ - f) = [2J/(2J + 1)]ll2 vector coherent state theory gives 

Iteration of (26) yields 

(23, + 2Am + 2) ! (2J, - 2Am) ! (23, + 1) ! (23, - , I  - n2 1)  ! 
K 2 ( n 1  = 2nI+n~(2J,,, + 2A, - nl  + 2)! (25, - 211, - n 2 ) !  (25, + 1 - n 2 ) !  (25, + 1 - n l ) !  

(28) 

(29) 

with 

A = A  m -1 2n1 +in 2 2 J = J  -1, -1, 
m 2 1  2 2  

where the limits 

O S  n 2 S  2( J ,  -A, )  O S n , s 2 A ,  (30) 

follow for n2 from the structure of K 2  and for n, from the value of the Racah coefficient. 
Although the group USp(4) 2 USp(2) x USp(2) is an extremely simple example of 

a group with non-commuting raising generators, it may point the way toward a solution 
for more complicated cases. The key to the successful use of the vector coherent state 
method may be the effective uncoupling of the two types of bosonic variables, such 
as w and z. The existence of the additional true quantum numbers J makes this 
particularly simple in the present example, and more complicated cases may require 
more laborious techniques, such as matrix diagonalisation. Nevertheless, the simple 
example of USp(4) 3 USp(2) x USp(2) gives some indication that the vector coherent 
state method may be useful in the construction of irreducible representations for groups 
with non-commuting raising generators. 

An alternate approach used in the non-compact Sp(4, R )  version of this group 
(Castaiios and Moshinsky 1987) starts with a general expression for the overlap kernel 
developed in terms of three commuting raising generators. This is then transformed 
into the appropriate basis on expansion. Although less direct than the present method 
it may prove powerful in more general cases. 

One of the authors (KTH) thanks Professor K Ikeda and Niigata University for their 
kind hospitality and the Japan Society for the Promotion of Science for its support. 
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